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Problem: For decades, manufacturing processes like machining, injection molding, and tool and 
die making have formed the backbone of the US industrial base, spurring progress and growth, 
from putting humans in space, to enabling the growth of life-changing medical technologies, to 
the scale-up of the country’s clean energy infrastructure. Yet many aspects of these 
manufacturing technologies are outdated and have resisted modernization. They still require 
significant inputs of time, materials, energy, and labor. 

This has resulted in an industry that is stagnant in the US and declining across Europe 
due to rising energy costs. Critical manufacturing knowledge is being lost as experienced 
workers retire faster than new ones can be trained. Much of the expertise required to optimize 
production – often called ‘tacit’ knowledge – exists in the minds of experienced workers, and is 
often a rate-limiting factor in industrial processes. When this knowledge is lost, production is 
slowed (or, in some cases, shuttered altogether) and quality suffers. Moreover, the manufacturing 
processes are  also disjointed and inefficient, resulting in both higher energy consumption and 
costs — a problem acutely felt in Europe right now. As a result of  the erosion of the US and 
European industrial base, manufacturing labor is outsourced to locations that exploit low labor 
costs, lack of environmental regulations, and longer, more vulnerable supply chains. 
 

 
Vision: To solve these problems, we are building a novel manufacturing system that leverages 
recent advances in machine learning, simulations, data-driven control, and additive 
manufacturing. First, we aim to build differentiable end-to-end process automation, allowing 
entire manufacturing workflows to be optimized holistically. Second, we are developing an 
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adaptive system that learns from expert demonstrations and continuously improves through real 
physical process monitoring and experimentation. Third, we are creating models capable of 
simulating complex physical processes, enabling precise control for fast, real-time adjustments. 
The result is an integrated system for multiphysics-driven manufacturing that bridges the gap 
between traditional expertise and advanced automation, shortens cycle times and adapts to 
dynamic conditions, thereby reducing waste, lowering costs, and enhancing the quality of the 
parts that we produce.  

With an initial focus on die casting – an inefficient process hindered by a lack of codified 
expertise – our solution ensures that critical knowledge is captured, optimized, and continuously 
applied across the entire production pipeline, from tooling to final product. Ultimately, this 
approach will transform not just how parts are made but how knowledge is preserved and applied 
— closing the gap between design, production, and performance.   
 
State of the Art: Manufacturing has historically resisted modernization, though some progress 
has been made. Today’s state-of-the-art manufacturing centers are equipped with extensive 
sensors, yet much of the collected data remains underutilized. The industry remains fragmented, 
with critical data often siloed between stakeholders, limiting the ability to implement real-time 
feedback loops that could significantly enhance processes. Simulations, though used, are still 
slow, costly, and not well-suited for rapid iteration. 
In contrast, other industries have made great strides by leveraging several key advances in 
software. Lower computational costs and faster simulations now allow for rapid design iteration. 
Machine learning enables the extraction of expert patterns from data at scale, and differentiable 
programming combined with end-to-end optimization makes it possible to efficiently solve 
complex design challenges. 

Our approach applies these advances to manufacturing in novel ways. In past projects, we 
designed mechanical systems whose morphology and control evolved jointly through end-to-end 
optimization, resulting in more efficient and robust outcomes than traditional methods (Oktay 
2023). Recently, we developed a machine learning architecture that models physical systems 
with guarantees of physical consistency, designed for structural engineering (Pastrana 2024). 
This method achieved simulation and optimization speeds nearly 1,000x faster than existing 
approaches, running on standard consumer-grade hardware while remaining interpretable. We 
have also built differentiable simulators capable of precisely controlling energy flows in complex 
physical domains (Bordiga 2024). By bringing these tools into manufacturing, we aim to break 
through long-standing industry bottlenecks—enabling faster iteration, enhanced process 
efficiency, and systems that continually improve through feedback. 
 
Market Viability: For our technology to succeed, it must reduce unit costs and prove its value in 
industries that are traditionally slow to adopt new technologies. While we are actively building a 
techno-economic model, increased efficiency will lead to higher material throughput, translating 
into lower unit production costs. Taking a die cast part as an example, end-to-end optimization 
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would allow us to materially reduce five of the main cost components: energy (optimized 
controls systems reduce energy consumption); materials (fewer defects, reduced scrap rates, and 
improved yields lower costs); tooling (design simplification reduces upfront costs); labor 
(automated processes minimize human intervention); and post processing (reduces the need for 
trimming and heat treatment). We are actively conducting interviews, and our initial 
conversations have affirmed that there is a significant unmet need for solutions that address these 
cost components, positioning us to offer a superior alternative to the industry status quo. 
 
Milestones and Risks: Our development plan includes several key milestones to guide progress. 
In the short term, we will build small-scale prototypes to validate our adaptive control systems; 
these prototypes will allow us to test the feasibility of our approach and refine the underlying 
technology. At the same time, we will seek partnerships with manufacturers to integrate our 
early-stage solutions into real-world production environments. We aim to scale this technology 
into sectors such as automotive, aerospace, and medical devices, where the demand for 
high-quality, precision components is high.  

We will also have to simultaneously manage several risks. The integration of machine 
learning, simulation, and control systems presents a significant technical challenge, as each 
component must work seamlessly together. Adoption risk is another concern, as startups 
frequently face high perceived vendor risk in the eyes of customers. Financing risk is also high, 
given the need for substantial capex and R&D investment before achieving profitability. 
Additionally, we must ensure compliance with evolving regulatory standards, particularly in 
industries such as aerospace and medical devices.  
 
Social Impact: Beyond its economic benefits, our platform has the potential to drive significant 
environmental and social impact. By optimizing energy consumption, our technology will reduce 
the carbon footprint of manufacturing processes. Shortening supply chains will further reduce 
emissions by minimizing the need for long-distance transportation. In addition, improved quality 
control will extend product life cycles. This shift will reduce dependence on exploitative global 
supply chains and help revitalize domestic manufacturing, ensuring that the benefits of 
innovation are distributed more equitably. 
 
Conclusion: Our mission is to revolutionize manufacturing by integrating simulation, adaptive 
control, and machine learning into real-world production systems. By closing knowledge gaps, 
streamlining processes, and enabling more energy-efficient manufacturing, we aim to secure the 
future of critical industries while positioning the U.S. at the forefront of industrial innovation. 
With the right support, we can launch a platform that addresses both economic and 
environmental challenges, ensuring sustainable growth for the next generation of manufacturing. 
Technical Details: Manufacturing consists of three interconnected phases: design & engineering, 
production, and metrology. Although often treated as distinct, these phases are deeply 
interdependent. Design focuses on geometry and functionality but must account for 
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manufacturing constraints and define key dimensions and properties. Production involves 
process design, material flow, and control of variables such as pressure, flow rate, and 
temperature, while metrology ensures quality throughout every step and in the final output. 

In die casting, the process is particularly complex, requiring precise control over material 
flow, solidification, and thermal management, and the design of the necessary assembly to 
generate a desired part. This involves balancing geometry, physics, and control inputs to achieve 
optimal outcomes. Unfortunately, the complexity makes it difficult for a single person to 
manage, let alone optimize, every step. However, recent advances suggest that these challenges 
become manageable with systems capable of end-to-end optimization. These complexities align 
perfectly with the requirements for developing differentiable optimization pipelines, as seen in 
other industries. 

A solution lies in model-based control and differentiable, end-to-end systems that 
optimize geometry and control parameters—such as temperature profiles and material 
flow—concurrently. Traditional workflows are slow, requiring iterative simulations and 
extensive manual tuning. However, novel architectures, such as neuromechanical and 
physics-constrained autoencoders, now enable faster and more efficient optimization. These 
systems rely on amortized simulation and optimization, distributing computational workloads 
across tasks through differentiable implementations, allowing real-time adaptation and feedback. 

These methods, originally developed for computational solid mechanics, are very 
well-suited to die casting, which primarily involves complex fluid mechanics. Translating these 
methods to die casting makes logical sense: the governing equations are well-defined, and the 
geometric design space has expanded with additively manufactured dies, enabling more complex 
shapes and finer flow path control. Moreover, sensorized die-casting machines and 
advancements in metrology provide real-time feedback from production parts that further 
bridging the sim-to-real gap. 

These technologies unlock the full potential of end-to-end pipelines, allowing 
simultaneous optimization of both geometry and process control. This integrated approach 
promises to transform die casting by delivering exceptional precision, reducing defects, and 
maximizing efficiency and throughput. 
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