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Frequency Sweeps
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Solutions to Helmholtz Problem

[Klu(w) — w?[Mu(w) = f(w)

where [K] is the stiffness matrix and [M] is the mass matrix
d 2 __
i (K —wM)u(w) = f(w)]
If K and M matrix independent of w
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Solutions to Helmholtz Problem

If K is dependent on w then derivatives of the solution have form:
Ku ((JJ) — w’2 \[U(w‘) = f(tu')

K& —2pde = 4 248y 4 2wMu
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Using General Leibniz Rule— nth derivative can be written as:

d" — k
(K — w*M)—— = — f) _ Z (” ; )ucn—k)( K — w?M)®

vdn
k=1
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Storing derivatives of K
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Stiffness Matrix
K = a(w,u) = [, e(w)" De(u)

By the Leibniz’s Rule of differentiation under an integral
d rdD
o /. e(w)! De(u)dQ = /Qe(w) - e(u)dS2

D 1is the constitutive matrix
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Computation of the Derivatives of K

For Isotropic Material the constitutive matrix D has the
following form:

A\ + 20 A A 0 0 0
A A+20 A 0 0 0
A A A+2 0 0 0
0 0 0 4 00
0 0 0 0 pu 0
0 0 0 00 u

where the Lame parameter

_ p(E—2p)
where p is the shear modtus and E is the modulus of
elasticity.
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Constitutive Matrix

200 0 00
02 0 000
00 2 000

000100

000010

000001

+pu

I 11000
I 11000
I 11000

000000

000000

000000

A
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Derivatives can now be taken with respect
to the scalar value

1100 0 020000
d"Al1 11000 dul00 2000
00000 0 dCdUOUOlO
000000 00000 1

Rather than storing entire matrices we only store the values of
the derivatives and the matrices
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Acoustics of Rubber Material

Rubber Material is subject to partially inelastic wave scattering that
is dependent on frequency. The material is assumed to be isotropic.

Subject to loss factor

A\ — pu(E—2pu)

3u—FE
E* = Eo(l + 7762)
1 = o1+ )
i =—1
E, = Ew+ oy
Lo = [ + (g
Ne = W + Q3

Nt = 1w -+ Xy
*denotes complex modulus
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Automatic Differentiation

e Also known as Algorithmic Differentiation or computational
differentiation. Not symbolic or numerical differentiation. When
implementing “forward” differentiation the software breaks down
the problem into elementary operations and applies the Chain Rule
to compute the derivatives.

e Several Software Packages out there to experiment with
— ADOL-C -> fairly user friendly
— Eigen -> has an unsupported library

— Sacado-> trilinos product from Sandia National Labs already
used in AERO-S
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Automatic Differentiation

Forward Example:

f(x1, x2)=2*x12+cos(x2)

Set up intermediate variables
vl=x1

v2=Xx2

v3=2*v1*vl

v4=cos(v2)

v5=v3+V4

f(x1,x2)=v5

S

Find the x1 partial derivative f
vl’=1

v2’'=0

v3'=2*(v1'*v1+v1'*v1) <chamrue
V4'=-sin(v2)*v2 <chanrute
v5'=v3’+v4’

V4’=0 because -sin(v2)*v2’=0
f'(x1,x2)=2*(v1'*v1+vl'*v1)

plug in values of x1
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Automatic Differentiation

eam3349@FRG-10:~/ADOL-C-2.4.1

File Edit View Terminal Tabs Help
adouble lam(adouble omega, double muo, double alpha, double etamu, double beta, double Eo, double alpha2, double etaE, double beta2){ =

adouble a, b, ¢, d, lamTR, lamTI, gamma, zeta, lamTR1l, lamTR2, 1lamTI1, lamTI2, gamma2, lamB, lamR, lamI;

//setting up intermediate variables
a= muo*omega+alpha;
b= etamu*omega+beta;
c= Eo*omega+alpha2;
d= etaE*omega+beta2;

//foiling the top out
lamTR= a*c-2*a*a-a*b*c*d+2*a*a*b*b;
lamTI= a*c*d-2*a*a*b+a*b*c-2*a*a*b;

//brealing up the conjugate base for the imaginary part with intermediate variables
gamma= 3*a-c;
zeta= -3*a*b+c*d;

= eam3349@FRG-10:~/ADOL-C-2.4.1

File Edit View Terminal Tabs Help

[eam3349@FRG-10 ADOL-C-2.4.1]$ ./parame
type the derivatives desired

//multiplying top by conjugate base but splitting it up into real and imaginary parts
lamTR1= gamma*lamTR;

1lamTR2= -1*zeta*lamTI;

1amTI1l= lamTI*gamma;

lamTI2= lamTR*zeta; 155
what is the value of x at which you wish to compute the derivative at?
//calculating new denominator .2
gamma2= 3*a*b-c*d; to obtain value of the derivative at specified point multiply the nth taylor coefficent by n!

the 1st taylor coefficient is -1.35139
the 2nd taylor coefficient is -0.487158
the 3rd taylor coefficient is 0.0454498

lamB= gamma*gamma+gamma2*gamma2;

//obtaining two functions that contain real and imaginary the 4th taylor coefficient is -0.237613
lamR= (1amTR1+1amTR2)/(1lamB); the 5th taylor coefficient is 1.07444
lamI= (lamTI1l+1amTI2)/(lamB); the 6th taylor coefficient is -4.22385
the 7th taylor coefficient is 13.8256
//return function lamR for real the 8th taylor coefficient is -31.251
Ireturn lamI; the 9th taylor coeffi?ignt i.% -14.0946
the 10th taylor coefficient is 736.118

etc

Future vwork

Switching from ADOL-C to Sacado in order to not have to include another library. Learning how SACADO implements Automatic
Differentiation is the most difficult part.
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Questions?



